EMCal simulation Summary and Plan

Outline: sPHENIX EMCal Overview • Projective design update • Other simulation tasks

Jin Huang (BNL)

Brief summary for proposal simulation studies

sPHENIX Calorimeters

EM calorimeter

(EMCal): $18 X_0 SPACAL$

Inner hadron calorimeter

(inner HCal): $1 \lambda_0$ Cu-Scint. sampling

BaBar coil and cryostat.

(BaBar): $1 X_0$

Outer hadron calorimeter

(outer HCal): $4 \lambda_0$ Steel-Scint. sampling

Calorimeter energy distribution in full event central AuAu collisions and realistic magnetic field

SPACAL simulation

- SPACAL implemented in sPHENIX simulation framework
 - Thanks to reference model from A. Kiselev (EIC taskforce & EIC RD1)
- ▶ 10 GeV electron shower in a single SPACAL module shown
- Covered full azimuthal and |η|<1.1 in sPHENIX</p>
- ▶ 1-D projective in azimuth. Non-projective in polar direction

Compile everything together for barrel electron ID

Central AA electron ID (EMC Only)

Jin Huang <jihuang@bnl.gov>

1 RHIC AuAu run

100 B MB events

e+ e- decays

 π rejection 90

 $N_{\rm coll}$ scaled

invariant mass (GeV/c2)

centrality 0-10%

-1 < n < 1

Calorimeters in e/fsPHENIX

Use of calorimeter for EIC physics

- Electron identification (e-EMC, barrel EMC)
- Electron kinematics measurement (e-EMC, barrel EMC)
- DIS kinematics using hadron final states (barrel EMC/HCal, h-EMC/HCal)
- Photon ID for DVCS (All EMC)

From Sasha and Karen using parameterized performance

Recent progress on Projective EMCal design

Larger pseudo-rapidity in central AuAu: under study

- Out of the box: larger $|\eta| \rightarrow$ larger background
 - Longer path length in calorimeter
 - Covers more non-projective towers
- to improve
 - Better estimate of the underlying background event-by-event (improve x1.5)
 - Use (radially) thinner ECal (improve x2)
 - Possibilities for projective towers?

- all events (w/ embedding)
- with EMCal E/p cut (w/ embedding)
- Hijing background (AuAu 10%C in B-field)

Comparison for EID performance

Central rapidity |η|< 0.2

Forward rapidity $|\eta| = 0.7 - 0.9$

One R&D direction: world first 2-D tapered SPACAL

Red Screen Tilt 26° Rotate -0°, Blue Screen Tilt 26° Rotate 0°

Recent R&D progresses C. Pontieri, R. Ruggiero (BNL)

A. Sickle, V. Loggins (UIUC)

Other simulation tasks

Export of tower geometry

- Once the tower structure is detailed implemented in Geant4, the block
 -> eta,phi mapping would become non-trivial.
- Similar problem happens for SVX ladder and HCal tiles
- One option to carry these information from Geant4 -> Reco universe is through ROOT::TGeoManager (similar approach for PHENIX/FVTX)
 - Produce a copy of the detector geometry in TGeoManager (in less detailed level) by PHENIX G4 detector modules.
 - E.g. an EMCal block can be described by TGeoTrd2 (3D trapezoid) in TGeoManager
 - Assign each readout unit with a unique ID number
 - A geometry descriptive object in DST/T1 tree link the ID to a 3D object in TGeoManager
 - Save both TGeoManager and geometry descriptive object in DST, and used in reconstruction
- Will test this approach as part of work to implement 2D projective EMCal in G4

Detailed detection response Model

- In current simulation of sPHENIX calorimeters, energy from calorimeter is sum of total energy deposition or ionization energy deposition
- In post-CD0-stage, more realistic simulations, several experimental factors need to be considered, including ionizing energy loss, scintillating light modeling, transportation of photons, and noise in SiPM
- Scintillating light modeling ready for CVS submission: scintillation light saturation modeling [Birk, Phys. Rev. 84, 364, 1951]

Light Yield
$$\propto \frac{\frac{dE}{dx}}{1 + kB \frac{dE}{dx}}$$
 k_B^{\sim} 0.126 mm/MeV [arXiv:1106.5649v2]

Need to update the performance plot with these new considerations

Rear leakage

- As in many block calorimeter, steps formed by staging blocks leads to position dependent rear leakage
- Already observed in 1x1 block during Martin's simulation by scanning response along z
- Remedy?
 - Use 1x1 module towards larger eta region, with higher production complexity
 - Make the forward module longer, so the overlap region remain the nominal ~18 X0
- Need to quantify this effect and remedies in Geant4 Volunteer welcomed!

Sampling fraction variation

- In the current design 2D tapering in SPACAL comes with the cost that fiber density changes from front to back side of the SPACAL module by 10-20%
- This leads to a larger constant term in energy resolution
- Is this important comparing to 12%/sqrt(E) statistical term of energy resolution?
- Need to evaluate for both sPHENIX (eID performance, direct -Gamma) and EIC case (eID performance, kinematic smearing)
- Volunteer welcomed

Tower-by-tower shower shape analysis

- Hadron shower extend larger than EM Shower, which provide additional handle on electron ID
- Track based cluster finding to fully use the information
- Exploring modern machine learning algorithm (e.g. Boosted decision tree or support vector machine) to evaluate PID based tower response around primary track
- How does it work in heavy ion environment?
- Volunteer welcomed

Summary

- On-going R&D on projectivity
 - On-going R&D make it more hopeful to construct 2-D projective EMCal to improve key eID performance in forward rapidity
 - Will import CAD layout to Geant4 so we could simulate the 2-D projective EMCal in sPHENIX
- Multiple TODO tasks welcome volunteers
 - A few described in the last section
 - Test Anti-kT based clustering using fastJet code with Molier radius as R
 - Evaluate the EMCal performance in full event physics simulations, (e.g. Upsilon VS background)

Extra Information

Momentum distribution of Upsilon Electrons, With thinner SPACAL + background sub. + NON-PROJECTIVE

Implementing Birk's law

- Available now in G4hit level
- Could significantly affect e/h for both EMC and HCal

Absorber+Scintillator (GeV)

EMC energy deposition

Next: constructing 2D tapered modules

- Exploring first 2-D tapered SPACAL in the world
- From the Dec trips to UCLA, building 2-D tapered modules seems plausible but need to be tested. Many possible ideas, going to try both at BNL and UIUC (see Anne's talk)
 - Making tapered fiber matrix using a pair of wire screen (last slide)
 - Build double length module then pinch fiber matrix in the middle to make two proj. SPACAL (illustrated below)
 - Pull and squeeze on one side of fiber matrix with the other side fixed
 - Shaving straight modules to taper the sides
 - shrinkable screen,...
- Understand 2-D tapered module in simulation: implement this design in G4, does it deliver sufficient improvement?
- Optimize production technique, transfer the technology to production

Example of another possible building technique Discussed in UCLA meetings (BNL, UIUC, UCLA)

EMCal Design

Making Projective EMCal Modules

The current technology developed at UCLA can be used to produce 1D tapered modules

1D tapered module

2D tapered module

Two slotted wire frames allow two independent rotation angles

J.Huang BNL

Mass Production of Modules

- THP has been trying to build 1D modules and has been making reasonably good progress
- Problems with gluing and getting good uniformity and consistency
- Experiencing delivery problems with things like epoxy, meshes, etc.
- However, they have not significantly increased the efficiency for module production beyond what Oleg Tsai has done (still takes more than one day per module)
- Goal is to first produce acceptable modules and then try to improve efficiency
- Once they achieve this, we would then transfer the technology developed at BNL for producing 2D modules to them (→ ~ August)
- Hopefully they would then apply their improved production techniques to produce the 2D modules

Goal would be to have all modules for prototype(s) by this fall

SPACAL module production at BNL

- We have produced 4 modules at BNL so far
- We are holding off on producing more until the new 2D taper meshes/screens come in, possibly this week
- We have sufficient fiber, tungsten powder, screens, epoxy to produce another 12 modules
- We feel that we have worked through most of the issues and understand the process well
- Some issues that we have dealt with:
 - air bubbles/tungsten powder inclusions in clear epoxy region
 - Full and uniform penetration of epoxy through the tungsten powder
 - Uniform surface characteristics
 - Uniform fiber distribution
 - End surface finish/polish
- One module is currently in the PHENIX IR as part of the SiPM radiation damage testing.

Module Production at Illinois

Initially started trying to produce 2D tapered modules two at a time (bow tie design)

- New postdoc Vera Loggins is now working on module design and production. Spent 1 week with us here at BNL
- Currently planning to try and produce 1D modules using Oleg's technique as a next step

Scintillation Light Model

- In current simulation of sPHENIX calorimeters, energy from calorimeter is sum of total energy deposition or ionization energy deposition
- As moving towards next-stage more realistic simulations, several experimental factors need to be considered, including ionizing energy loss, scintillating light modeling, transportation of photons, and noise in SiPM
- One addition ready for CVS submission:
 scintillation light modeling [Birk, Phys. Rev. 84, 364, 1951]

Light Yield
$$\propto \frac{\frac{dE}{dx}}{1 + kB \frac{dE}{dx}}$$

 $k_{\rm R}^{\sim} 0.126 \text{ mm/MeV [arXiv:} 1106.5649v2]$

Implementing Birk's law

- Available now in G4hit level
- Could significantly affect e/h for both EMC and HCal

Absorber+Scintillator (GeV)

EMC energy deposition

EMC energy deposition

Absorber+Scintillator (GeV)

SPACAL simulation

- ▶ SPACAL implemented in sPHENIX simulation framework
 - Thanks to reference model from A. Kiselev (EIC taskforce & EIC RD1)
- ▶ 10 GeV electron shower in a single SPACAL module shown
- ▶ Covered full azimuthal and $|\eta|$ <1.1 in sPHENIX (Page 4)

sPHENIX Calorimeters

EM calorimeter

(EMCal): $18 X_0 SPACAL$

Inner hadron calorimeter

(inner HCal) : $1 \lambda_0$ Cu-Scint. sampling

BaBar coil and cryostat.

(BaBar): $1 X_0$

Outer hadron calorimeter

(outer HCal): $4 \lambda_0$ Steel-Scint. sampling

Calorimeter energy distribution in full event central AuAu collisions and realistic magnetic field

Final check should be against data

Next steps will be quantitative check against beam test data

Courtesy: O. Tsai (UCLA) SPACAL prototypes in 2014 Fermilab beam test Energy sum for 5x5 towers (asking for separated spectrum)

sPHENIX simulation of 8GeV e/π^{-} Energy sum for 5x5 towers (w/o scint. light modeling)

sPHENIX EMCal

- Upsilon electron ID main driving factor
- 2. Direct photon ID
- 3. Heavy flavor electron ID
- 4. Part of jet energy determination

SPACAL study (1): electron resolution

- ▶ Electron resolution → Electron PID efficiency
- Compared to simulation from EIC RD1 collaboration and beam test
- Consistent in general; more work on noise and cell structure simulation

sPHENIX simulation 5MeV(scint.)/tower zero-suppression

EIC RD1 study
FermiLab beam tests

Courtesy: A.Kiselev (BNL)

SPACAL study (2): spatial response

- Spacial containment of showers → size of cluster
- Energy deposition (A.U.)
- Percentage outside radiu

Outtie-HCal has much larger spread. See backup 1

Event background distribution in Central AuAu

- Study of electron ID in central AuAu
 - 1. Embed single particle simulation to full event Hijing simulations (0-4.4 fm, ~0-10% Central, in full magnetic field)
 - 2. Get rejection through re-optimized EMCal+ HCal cuts
- EMCal background is moderate
 - Most hadron particle leave MIP energy in EMCal
 - Tight EMCal Moliere radius
- Inner HCal background is significant, render it less useful in electron ID (compared with an alternative tighter E/p cut from EMCal)

eID in central AuAu, central pseudo-rapidity

4GeV electron and pion-, |η|<0.2 EMCal tower cut : R<3cm, Hcal cut : R<20cm

- Hijing background (AuAu 10%C in B-field)
- all c(w/ embedding)
- with EMCal E/p cut (w/ embedding)

Cracks and steps are not new problem See also projective crystal calorimeters

CLEO II EMCal Design

In contribution to energy resolution

No tilt angle, no magnetic field = leakage

4GeV photon tunnel through the gap

Energy deposition VS hit location (from Martin P.)

23mrad tilted blocks (no line of sight)

Over tilting of 196 mrad

Further tilt to the block diagonal angle

- Expect to observed non-projectivitiy effect in azimuthal
- Solved the uniformity problem for Upsilon electrons
- Uniformity for other particles still need to be better understood

Lepton bended towards from gap

Total energy VS hit location Measured energy VS hit location (Neg) Logic State of the control of the control

Lepton bended away from gap

Flexible taper ratio (different module for different eta rings)

92% - 88% taper

95% - 85% taper

Early SoLID Shashlyk EMCal simulation

1.5 T magnetic field along direction of EM shower

